Reproducible and minimal source-only tarballs

With the release of Libntlm version 1.8 the release tarball can be reproduced on several distributions. We also publish a signed minimal source-only tarball, produced by git-archive which is the same format used by Savannah, Codeberg, GitLab, GitHub and others. Reproducibility of both tarballs are tested continuously for regressions on GitLab through a CI/CD pipeline. If that wasn’t enough to excite you, the Debian packages of Libntlm are now built from the reproducible minimal source-only tarball. The resulting binaries are reproducible on several architectures.

What does that even mean? Why should you care? How you can do the same for your project? What are the open issues? Read on, dear reader…

This article describes my practical experiments with reproducible release artifacts, following up on my earlier thoughts that lead to discussion on Fosstodon and a patch by Janneke Nieuwenhuizen to make Guix tarballs reproducible that inspired me to some practical work.

Let’s look at how a maintainer release some software, and how a user can reproduce the released artifacts from the source code. Libntlm provides a shared library written in C and uses GNU Make, GNU Autoconf, GNU Automake, GNU Libtool and gnulib for build management, but these ideas should apply to most project and build system. The following illustrate the steps a maintainer would take to prepare a release:

git clone https://gitlab.com/gsasl/libntlm.git
cd libntlm
git checkout v1.8
./bootstrap
./configure
make distcheck
gpg -b libntlm-1.8.tar.gz

The generated files libntlm-1.8.tar.gz and libntlm-1.8.tar.gz.sig are published, and users download and use them. This is how the GNU project have been doing releases since the late 1980’s. That is a testament to how successful this pattern has been! These tarballs contain source code and some generated files, typically shell scripts generated by autoconf, makefile templates generated by automake, documentation in formats like Info, HTML, or PDF. Rarely do they contain binary object code, but historically that happened.

The XZUtils incident illustrate that tarballs with files that are not included in the git archive offer an opportunity to disguise malicious backdoors. I blogged earlier how to mitigate this risk by using signed minimal source-only tarballs.

The risk of hiding malware is not the only motivation to publish signed minimal source-only tarballs. With pre-generated content in tarballs, there is a risk that GNU/Linux distributions such as Trisquel, Guix, Debian/Ubuntu or Fedora ship generated files coming from the tarball into the binary *.deb or *.rpm package file. Typically the person packaging the upstream project never realized that some installed artifacts was not re-built through a typical autoconf -fi && ./configure && make install sequence, and never wrote the code to rebuild everything. This can also happen if the build rules are written but are buggy, shipping the old artifact. When a security problem is found, this can lead to time-consuming situations, as it may be that patching the relevant source code and rebuilding the package is not sufficient: the vulnerable generated object from the tarball would be shipped into the binary package instead of a rebuilt artifact. For architecture-specific binaries this rarely happens, since object code is usually not included in tarballs — although for 10+ years I shipped the binary Java JAR file in the GNU Libidn release tarball, until I stopped shipping it. For interpreted languages and especially for generated content such as HTML, PDF, shell scripts this happens more than you would like.

Publishing minimal source-only tarballs enable easier auditing of a project’s code, to avoid the need to read through all generated files looking for malicious content. I have taken care to generate the source-only minimal tarball using git-archive. This is the same format that GitLab, GitHub etc offer for the automated download links on git tags. The minimal source-only tarballs can thus serve as a way to audit GitLab and GitHub download material! Consider if/when hosting sites like GitLab or GitHub has a security incident that cause generated tarballs to include a backdoor that is not present in the git repository. If people rely on the tag download artifact without verifying the maintainer PGP signature using GnuPG, this can lead to similar backdoor scenarios that we had for XZUtils but originated with the hosting provider instead of the release manager. This is even more concerning, since this attack can be mounted for some selected IP address that you want to target and not on everyone, thereby making it harder to discover.

With all that discussion and rationale out of the way, let’s return to the release process. I have added another step here:

make srcdist
gpg -b libntlm-1.8-src.tar.gz

Now the release is ready. I publish these four files in the Libntlm’s Savannah Download area, but they can be uploaded to a GitLab/GitHub release area as well. These are the SHA256 checksums I got after building the tarballs on my Trisquel 11 aramo laptop:

91de864224913b9493c7a6cec2890e6eded3610d34c3d983132823de348ec2ca  libntlm-1.8-src.tar.gz
ce6569a47a21173ba69c990965f73eb82d9a093eb871f935ab64ee13df47fda1  libntlm-1.8.tar.gz

So how can you reproduce my artifacts? Here is how to reproduce them in a Ubuntu 22.04 container:

podman run -it --rm ubuntu:22.04
apt-get update
apt-get install -y --no-install-recommends autoconf automake libtool make git ca-certificates
git clone https://gitlab.com/gsasl/libntlm.git
cd libntlm
git checkout v1.8
./bootstrap
./configure
make dist srcdist
sha256sum libntlm-*.tar.gz

You should see the exact same SHA256 checksum values. Hooray!

This works because Trisquel 11 and Ubuntu 22.04 uses the same version of git, autoconf, automake, and libtool. These tools do not guarantee the same output content for all versions, similar to how GNU GCC does not generate the same binary output for all versions. So there is still some delicate version pairing needed.

Ideally, the artifacts should be possible to reproduce from the release artifacts themselves, and not only directly from git. It is possible to reproduce the full tarball in a AlmaLinux 8 container – replace almalinux:8 with rockylinux:8 if you prefer RockyLinux:

podman run -it --rm almalinux:8
dnf update -y
dnf install -y make wget gcc
wget https://download.savannah.nongnu.org/releases/libntlm/libntlm-1.8.tar.gz
tar xfa libntlm-1.8.tar.gz
cd libntlm-1.8
./configure
make dist
sha256sum libntlm-1.8.tar.gz

The source-only minimal tarball can be regenerated on Debian 11:

podman run -it --rm debian:11
apt-get update
apt-get install -y --no-install-recommends make git ca-certificates
git clone https://gitlab.com/gsasl/libntlm.git
cd libntlm
git checkout v1.8
make -f cfg.mk srcdist
sha256sum libntlm-1.8-src.tar.gz 

As the Magnus Opus or chef-d’œuvre, let’s recreate the full tarball directly from the minimal source-only tarball on Trisquel 11 – replace docker.io/kpengboy/trisquel:11.0 with ubuntu:22.04 if you prefer.

podman run -it --rm docker.io/kpengboy/trisquel:11.0
apt-get update
apt-get install -y --no-install-recommends autoconf automake libtool make wget git ca-certificates
wget https://download.savannah.nongnu.org/releases/libntlm/libntlm-1.8-src.tar.gz
tar xfa libntlm-1.8-src.tar.gz
cd libntlm-v1.8
./bootstrap
./configure
make dist
sha256sum libntlm-1.8.tar.gz

Yay! You should now have great confidence in that the release artifacts correspond to what’s in version control and also to what the maintainer intended to release. Your remaining job is to audit the source code for vulnerabilities, including the source code of the dependencies used in the build. You no longer have to worry about auditing the release artifacts.

I find it somewhat amusing that the build infrastructure for Libntlm is now in a significantly better place than the code itself. Libntlm is written in old C style with plenty of string manipulation and uses broken cryptographic algorithms such as MD4 and single-DES. Remember folks: solving supply chain security issues has no bearing on what kind of code you eventually run. A clean gun can still shoot you in the foot.

Side note on naming: GitLab exports tarballs with pathnames libntlm-v1.8/ (i.e.., PROJECT-TAG/) and I’ve adopted the same pathnames, which means my libntlm-1.8-src.tar.gz tarballs are bit-by-bit identical to GitLab’s exports and you can verify this with tools like diffoscope. GitLab name the tarball libntlm-v1.8.tar.gz (i.e., PROJECT-TAG.ARCHIVE) which I find too similar to the libntlm-1.8.tar.gz that we also publish. GitHub uses the same git archive style, but unfortunately they have logic that removes the ‘v’ in the pathname so you will get a tarball with pathname libntlm-1.8/ instead of libntlm-v1.8/ that GitLab and I use. The content of the tarball is bit-by-bit identical, but the pathname and archive differs. Codeberg (running Forgejo) uses another approach: the tarball is called libntlm-v1.8.tar.gz (after the tag) just like GitLab, but the pathname inside the archive is libntlm/, otherwise the produced archive is bit-by-bit identical including timestamps. Savannah’s CGIT interface uses archive name libntlm-1.8.tar.gz with pathname libntlm-1.8/, but otherwise file content is identical. Savannah’s GitWeb interface provides snapshot links that are named after the git commit (e.g., libntlm-a812c2ca.tar.gz with libntlm-a812c2ca/) and I cannot find any tag-based download links at all. Overall, we are so close to get SHA256 checksum to match, but fail on pathname within the archive. I’ve chosen to be compatible with GitLab regarding the content of tarballs but not on archive naming. From a simplicity point of view, it would be nice if everyone used PROJECT-TAG.ARCHIVE for the archive filename and PROJECT-TAG/ for the pathname within the archive. This aspect will probably need more discussion.

Side note on git archive output: It seems different versions of git archive produce different results for the same repository. The version of git in Debian 11, Trisquel 11 and Ubuntu 22.04 behave the same. The version of git in Debian 12, AlmaLinux/RockyLinux 8/9, Alpine, ArchLinux, macOS homebrew, and upcoming Ubuntu 24.04 behave in another way. Hopefully this will not change that often, but this would invalidate reproducibility of these tarballs in the future, forcing you to use an old git release to reproduce the source-only tarball. Alas, GitLab and most other sites appears to be using modern git so the download tarballs from them would not match my tarballs – even though the content would.

Side note on ChangeLog: ChangeLog files were traditionally manually curated files with version history for a package. In recent years, several projects moved to dynamically generate them from git history (using tools like git2cl or gitlog-to-changelog). This has consequences for reproducibility of tarballs: you need to have the entire git history available! The gitlog-to-changelog tool also output different outputs depending on the time zone of the person using it, which arguable is a simple bug that can be fixed. However this entire approach is incompatible with rebuilding the full tarball from the minimal source-only tarball. It seems Libntlm’s ChangeLog file died on the surgery table here.

So how would a distribution build these minimal source-only tarballs? I happen to help on the libntlm package in Debian. It has historically used the generated tarballs as the source code to build from. This means that code coming from gnulib is vendored in the tarball. When a security problem is discovered in gnulib code, the security team needs to patch all packages that include that vendored code and rebuild them, instead of merely patching the gnulib package and rebuild all packages that rely on that particular code. To change this, the Debian libntlm package needs to Build-Depends on Debian’s gnulib package. But there was one problem: similar to most projects that use gnulib, Libntlm depend on a particular git commit of gnulib, and Debian only ship one commit. There is no coordination about which commit to use. I have adopted gnulib in Debian, and add a git bundle to the *_all.deb binary package so that projects that rely on gnulib can pick whatever commit they need. This allow an no-network GNULIB_URL and GNULIB_REVISION approach when running Libntlm’s ./bootstrap with the Debian gnulib package installed. Otherwise libntlm would pick up whatever latest version of gnulib that Debian happened to have in the gnulib package, which is not what the Libntlm maintainer intended to be used, and can lead to all sorts of version mismatches (and consequently security problems) over time. Libntlm in Debian is developed and tested on Salsa and there is continuous integration testing of it as well, thanks to the Salsa CI team.

Side note on git bundles: unfortunately there appears to be no reproducible way to export a git repository into one or more files. So one unfortunate consequence of all this work is that the gnulib *.orig.tar.gz tarball in Debian is not reproducible any more. I have tried to get Git bundles to be reproducible but I never got it to work — see my notes in gnulib’s debian/README.source on this aspect. Of course, source tarball reproducibility has nothing to do with binary reproducibility of gnulib in Debian itself, fortunately.

One open question is how to deal with the increased build dependencies that is triggered by this approach. Some people are surprised by this but I don’t see how to get around it: if you depend on source code for tools in another package to build your package, it is a bad idea to hide that dependency. We’ve done it for a long time through vendored code in non-minimal tarballs. Libntlm isn’t the most critical project from a bootstrapping perspective, so adding git and gnulib as Build-Depends to it will probably be fine. However, consider if this pattern was used for other packages that uses gnulib such as coreutils, gzip, tar, bison etc (all are using gnulib) then they would all Build-Depends on git and gnulib. Cross-building those packages for a new architecture will therefor require git on that architecture first, which gets circular quick. The dependency on gnulib is real so I don’t see that going away, and gnulib is a Architecture:all package. However, the dependency on git is merely a consequence of how the Debian gnulib package chose to make all gnulib git commits available to projects: through a git bundle. There are other ways to do this that doesn’t require the git tool to extract the necessary files, but none that I found practical — ideas welcome!

Finally some brief notes on how this was implemented. Enabling bootstrappable source-only minimal tarballs via gnulib’s ./bootstrap is achieved by using the GNULIB_REVISION mechanism, locking down the gnulib commit used. I have always disliked git submodules because they add extra steps and has complicated interaction with CI/CD. The reason why I gave up git submodules now is because the particular commit to use is not recorded in the git archive output when git submodules is used. So the particular gnulib commit has to be mentioned explicitly in some source code that goes into the git archive tarball. Colin Watson added the GNULIB_REVISION approach to ./bootstrap back in 2018, and now it no longer made sense to continue to use a gnulib git submodule. One alternative is to use ./bootstrap with --gnulib-srcdir or --gnulib-refdir if there is some practical problem with the GNULIB_URL towards a git bundle the GNULIB_REVISION in bootstrap.conf.

The srcdist make rule is simple:

git archive --prefix=libntlm-v1.8/ -o libntlm-1.8-src.tar.gz HEAD

Making the make dist generated tarball reproducible can be more complicated, however for Libntlm it was sufficient to make sure the modification times of all files were set deterministically to the timestamp of the last commit in the git repository. Interestingly there seems to be a couple of different ways to accomplish this, Guix doesn’t support minimal source-only tarballs but rely on a .tarball-timestamp file inside the tarball. Paul Eggert explained what TZDB is using some time ago. The approach I’m using now is fairly similar to the one I suggested over a year ago. If there are problems because all files in the tarball now use the same modification time, there is a solution by Bruno Haible that could be implemented.

Side note on git tags: Some people may wonder why not verify a signed git tag instead of verifying a signed tarball of the git archive. Currently most git repositories uses SHA-1 for git commit identities, but SHA-1 is not a secure hash function. While current SHA-1 attacks can be detected and mitigated, there are fundamental doubts that a git SHA-1 commit identity uniquely refers to the same content that was intended. Verifying a git tag will never offer the same assurance, since a git tag can be moved or re-signed at any time. Verifying a git commit is better but then we need to trust SHA-1. Migrating git to SHA-256 would resolve this aspect, but most hosting sites such as GitLab and GitHub does not support this yet. There are other advantages to using signed tarballs instead of signed git commits or git tags as well, e.g., tar.gz can be a deterministically reproducible persistent stable offline storage format but .git sub-directory trees or git bundles do not offer this property.

Doing continous testing of all this is critical to make sure things don’t regress. Libntlm’s pipeline definition now produce the generated libntlm-*.tar.gz tarballs and a checksum as a build artifact. Then I added the 000-reproducability job which compares the checksums and fails on mismatches. You can read its delicate output in the job for the v1.8 release. Right now we insists that builds on Trisquel 11 match Ubuntu 22.04, that PureOS 10 builds match Debian 11 builds, that AlmaLinux 8 builds match RockyLinux 8 builds, and AlmaLinux 9 builds match RockyLinux 9 builds. As you can see in pipeline job output, not all platforms lead to the same tarballs, but hopefully this state can be improved over time. There is also partial reproducibility, where the full tarball is reproducible across two distributions but not the minimal tarball, or vice versa.

If this way of working plays out well, I hope to implement it in other projects too.

What do you think? Happy Hacking!

More on Differential Reproducible Builds: Devuan is 46% reproducible!

Building on my work to rebuild Trisquel GNU/Linux 11.0 aramo, it felt simple to generalize the tooling to any two apt-repository pairs and I’ve created debdistreproduce as a template-project for doing this through the infrastructure of GitLab CI/CD and meanwhile even set up my own gitlab-runner on spare hardware. I’ve brought over reproduce/trisquel to using debdistreproduce as well, and archived the old reproduce-trisquel project.

After fixing some quirks, building Devuan GNU+Linux 4.0 Chimaera was fairly quick since they do not modify that many packages, and I’m now able to reproduce 46% of the packages that Devuan Chimaera add/modify on amd64. I have more work in progress here (hint: reproduce/pureos), but PureOS is considerably larger than both Trisquel and Devuan together. I’m not sure how interested Devuan or PureOS are in reproducible builds though.

Reflecting on this work made me realize that while the natural thing to do here was to differentiate two different apt-based distributions, I have realized the same way I did for debdistdiff that it would also be interesting to compare, say, Debian bookworm from Debian unstable, especially now that they should be fairly close together. My tooling should support that too. However, to really provide any benefit from the more complete existing reproducible testing of Debian, some further benefit from doing that would be useful and I can’t articulate one right now.

One ultimate goal with my effort is to improve trust in apt-repositories, and combining transparency-style protection a’la apt-sigstore with third-party validated reproducible builds may indeed be one such use-case that would benefit the wider community of apt-repositories. Imagine having your system not install any package unless it can verify it against a third-party reproducible build organization that commits their results in a tamper-proof transparency ledger. But I’m now on repeat here, so will stop.

Trisquel is 42% Reproducible!

The absolute number may not be impressive, but what I hope is at least a useful contribution is that there actually is a number on how much of Trisquel is reproducible. Hopefully this will inspire others to help improve the actual metric.

tl;dr: go to reproduce-trisquel.

When I set about to understand how Trisquel worked, I identified a number of things that would improve my confidence in it. The lowest hanging fruit for me was to manually audit the package archive, and I wrote a tool called debdistdiff to automate this for me. That led me to think about apt archive transparency more in general. I have made some further work in that area (hint: apt-verify) that deserve its own blog post eventually. Most of apt archive transparency is futile if we don’t trust the intended packages that are in the archive. One way to measurable increase trust in the package are to provide reproducible builds of the packages, which should by now be an established best practice. Code review is still important, but since it will never provide positive guarantees we need other processes that can identify sub-optimal situations automatically. The way reproducible builds easily identify negative results is what I believe has driven much of its success: its results are tangible and measurable. The field of software engineering is in need of more such practices.

The design of my setup to build Trisquel reproducible are as follows.

  • The project debdistget is responsible for downloading Release/Packages files (which are the most relevant files from dists/) from apt archives, and works by commiting them into GitLab-hosted git-repositories. I maintain several such repositories for popular apt-archives, including for Trisquel and its upstream Ubuntu. GitLab invokes a schedule pipeline to do the downloading, and there is some race conditions here.
  • The project debdistdiff is used to produce the list of added and modified packages, which are the input to actually being able to know what packages to reproduce. It publishes human readable summary of difference for several distributions, including Trisquel vs Ubuntu. Early on I decided that rebuilding all of the upstream Ubuntu packages is out of scope for me: my personal trust in the official Debian/Ubuntu apt archives are greater than my trust of the added/modified packages in Trisquel.
  • The final project reproduce-trisquel puts the pieces together briefly as follows, everything being driven from its .gitlab-ci.yml file.
    • There is a (manually triggered) job generate-build-image to create a build image to speed up CI/CD runs, using a simple Dockerfile.
    • There is a (manually triggered) job generate-package-lists that uses debdistdiff to generate and store package lists and puts its output in lists/. The reason this is manually triggered right now is due to a race condition.
    • There is a (scheduled) job that does two things: from the package lists, the script generate-ci-packages.sh builds a GitLab CI/CD instruction file ci-packages.yml that describes jobs for each package to build. The second part is generate-readme.sh that re-generate the project’s README.md based on the build logs and diffoscope outputs that stored in the git repository.
    • Through the ci-packages.yml file, there is a large number of jobs that are dynamically defined, which currently are manually triggered to not overload the build servers. The script build-package.sh is invoked and attempts to rebuild a package, and stores build log and diffoscope output in the git project itself.

I did not expect to be able to use the GitLab shared runners to do the building, however they turned out to work quite well and I postponed setting up my own runner. There is a manually curated lists/disabled-aramo.txt with some packages that all required too much disk space or took over two hours to build. Today I finally took the time to setup a GitLab runner using podman running Trisquel aramo, and I expect to complete builds of the remaining packages soon — one of my Dell R630 server with 256GB RAM and dual 2680v4 CPUs should deliver sufficient performance.

Current limitations and ideas on further work (most are filed as project issues) include:

  • We don’t support *.buildinfo files. As far as I am aware, Trisquel does not publish them for their builds. Improving this would be a first step forward, anyone able to help? Compare buildinfo.debian.net. For example, many packages differ only in their NT_GNU_BUILD_ID symbol inside the ELF binary, see example diffoscope output for libgpg-error. By poking around in jenkins.trisquel.org I managed to discover that Trisquel built initramfs-utils in the randomized path /build/initramfs-tools-bzRLUp and hard-coding that path allowed me to reproduce that package. I expect the same to hold for many other packages. Unfortunately, this failure turned into success with that package moved the needle from 42% reproducibility to 43% however I didn’t let that stand in the way of a good headline.
  • The mechanism to download the Release/Package-files from dists/ is not fool-proof: we may not capture all ever published such files. While this is less of a concern for reproducibility, it is more of a concern for apt transparency. Still, having Trisquel provide a service similar to snapshot.debian.org would help.
  • Having at least one other CPU architecture would be nice.
  • Due to lack of time and mental focus, handling incremental updates of new versions of packages is not yet working. This means we only ever build one version of a package, and never discover any newly published versions of the same package. Now that Trisquel aramo is released, the expected rate of new versions should be low, but still happens due to security or backports.
  • Porting this to test supposedly FSDG-compliant distributions such as PureOS and Gnuinos should be relatively easy. I’m also looking at Devuan because of Gnuinos.
  • The elephant in the room is how reproducible Ubuntu is in the first place.

Happy Easter Hacking!

Update 2023-04-17: The original project “reproduce-trisquel” that was announced here has been archived and replaced with two projects, one generic “debdistreproduce” and one with results for Trisquel: “reproduce/trisquel“.

Understanding Trisquel

Ever wondered how Trisquel and Ubuntu differs and what’s behind the curtain from a developer perspective? I have. Sharing what I’ve learnt will allow you to increase knowledge and trust in Trisquel too.

Trisquel GNU/Linux logo

The scripts to convert an Ubuntu archive into a Trisquel archive are available in the ubuntu-purge repository. The easy to read purge-focal script lists the packages to remove from Ubuntu 20.04 Focal when it is imported into Trisquel 10.0 Nabia. The purge-jammy script provides the same for Ubuntu 22.04 Jammy and (the not yet released) Trisquel 11.0 Aramo. The list of packages is interesting, and by researching the reasons for each exclusion you can learn a lot about different attitudes towards free software and understand the desire to improve matters. I wish there were a wiki-page that for each removed package summarized relevant links to earlier discussions. At the end of the script there is a bunch of packages that are removed for branding purposes that are less interesting to review.

Trisquel adds a couple of Trisquel-specific packages. The source code for these packages are in the trisquel-packages repository, with sub-directories for each release: see 10.0/ for Nabia and 11.0/ for Aramo. These packages appears to be mostly for branding purposes.

Trisquel modify a set of packages, and here is starts to get interesting. Probably the most important package to modify is to use GNU Linux-libre instead of Linux as the kernel. The scripts to modify packages are in the package-helpers repository. The relevant scripts are in the helpers/ sub-directory. There is a branch for each Trisquel release, see helpers/ for Nabia and helpers/ for Aramo. To see how Linux is replaced with Linux-libre you can read the make-linux script.

This covers the basic of approaching Trisquel from a developers perspective. As a user, I have identified some areas that need more work to improve trust in Trisquel:

  • Auditing the Trisquel archive to confirm that the intended changes covered above are the only changes that are published.
  • Rebuild all packages that were added or modified by Trisquel and publish diffoscope output comparing them to what’s in the Trisquel archive. The goal would be to have reproducible builds of all Trisquel-related packages.
  • Publish an audit log of the Trisquel archive to allow auditing of what packages are published. This boils down to trust of the OpenPGP key used to sign the Trisquel archive.
  • Trisquel archive mirror auditing to confirm that they are publishing only what comes from the official archive, and that they do so timely.

I hope to publish more about my work into these areas. Hopefully this will inspire similar efforts in related distributions like PureOS and the upstream distributions Ubuntu and Debian.

Happy hacking!