OpenPGP 2019 Key Transition Statement

I have created a new OpenPGP key and will be transitioning away from my old key. If you have signed my old key, I would appreciate signatures on my new key as well. I have created a transition statement that can be downloaded from https://josefsson.org/key-transition-2019-03-20.txt.

Below is the signed statement.

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

OpenPGP Key Transition Statement for Simon Josefsson <simon@josefsson.org>

I have created a new OpenPGP key and will be transitioning away from
my old key.  The old key has not been compromised and will continue to
be valid for some time, but I prefer all future correspondence to be
encrypted to the new key, and will be making signatures with the new
key going forward.

I would like this new key to be re-integrated into the web of trust.
This message is signed by both keys to certify the transition.  My new
and old keys are signed by each other.  If you have signed my old key,
I would appreciate signatures on my new key as well, provided that
your signing policy permits that without re-authenticating me.

The old key, which I am transitioning away from, is:

pub   rsa3744 2014-06-22 [SC]
      9AA9 BDB1 1BB1 B99A 2128  5A33 0664 A769 5426 5E8C

The new key, to which I am transitioning, is:

pub   ed25519 2019-03-20 [SC]
      B1D2 BD13 75BE CB78 4CF4  F8C4 D73C F638 C53C 06BE

The key may be downloaded from: https://josefsson.org/key-20190320.txt

To fetch the full new key from a public key server using GnuPG, run:

  gpg --keyserver keys.gnupg.net \
      --recv-key B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

If you already know my old key, you can now verify that the new key is
signed by the old one:

  gpg --check-sigs B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

If you are satisfied that you've got the right key, and the User IDs
match what you expect, I would appreciate it if you would sign my key:

  gpg --sign-key B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

You can upload your signatures to a public keyserver directly:

  gpg --keyserver keys.gnupg.net \
      --send-key B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

Or email simon@josefsson.org (possibly encrypted) the output from:

  gpg --armor --export B1D2BD1375BECB784CF4F8C4D73CF638C53C06BE

If you'd like any further verification or have any questions about the
transition please contact me directly.

To verify the integrity of this statement:

  wget -q -O- https://josefsson.org/key-transition-2019-03-20.txt | gpg --verify

/Simon
-----BEGIN PGP SIGNATURE-----

iQIHBAEBCgAdFiEEmqm9sRuxuZohKFozBmSnaVQmXowFAlyT8SQACgkQBmSnaVQm
XoxASQ6fUqFbueRikTu5Mp8V/J6BUoU94coqii3Pd15A2Kss9yzXpt+6ls5gpwzE
oxOubhxtFZ2WqNxVXwV/8e/48XDbDyy7WWh6Ao+8wQl+zl5CU8KUhM5zhUVR0BS4
IfTTs/JudrJASCocEPvRyuJ9cdhn66KCqleWIC+SEzPoxo+E941FxYUhHpL1jSul
ln1TR/0SGhSx19Cy6emej26p1Hs+kwHaiTo8eWgdQAg/yjY7z0RQJ1itVwfZaPJn
Ob2Bbs082U1Tho8RpjMS1mC9+cjsYadbMBgYTJ6HLkQ4xjuTFS021eWwdd0a39Pd
f4terKu+QT6y3FoQgQE8fZ+eaqEf5VLqVR/SxSR36LcrCX3GhBlEUo5RvYEWdRtd
uyBKR60G8zS0yGfDrsGjRT2Rag3B5rBbjml4Tn9nijG1LACeTci828y5+JykD7+l
l3kzrES90IOUwvrNQg9QyJxOJJ/SsZw2dcHEtltfg0o9nXxQqQQCA4STUSTLlf6p
G6T2+vd6LVYD5Zs6e4iutcvEpUzWYCvOC4RI+YMHrMU/nP44sgfjm4izx5CaKPH8
/UwQNhiS/ccsxMwEgnYTXi8shAUwA9gd6/92WVKCIMd5BpBi7JZ7QSoRiHUEARYK
AB0WIQSx0r0Tdb7LeEz0+MTXPPY4xTwGvgUCXJPxJAAKCRDXPPY4xTwGvuxpAQDn
Ws6Hn0RBqKyN5LJ4cXt55FDhaFpeJh7ZG4sHEdn3bAD/ags7v19305cAkvpbSEdX
MJoESOiUD1BwNTihVH9XBwc=
=r0qK
-----END PGP SIGNATURE-----

Planning for a new OpenPGP key

I’m the process of migrating to a new OpenPGP key. I have been using GnuPG with keys stored on external hardware (smartcards) for a long time, and I’m firmly committed to that choice. Algorithm wise, RSA was the best choice back for me when I created my key in 2002, and I used it successfully with a non-standard key size for many years. In 2014 it was time for me to move to a new stronger key, and I still settled on RSA and a non-standard key size. My master key was 3744 bits instead of 1280 bits, and the smartcard subkeys were 2048 bits instead of 1024 bits. At that time, I had already moved from the OpenPGP smartcard to the NXP-based YubiKey NEO (version 3) that runs JavaCard applets. The primary relevant difference for me was the availability of source code for the OpenPGP implementation running on the device, in the ykneo-openpgp project. The device was still a proprietary hardware and firmware design though.

Five years later, it is time for a new key again, and I allow myself to revisit some decisions that I made last time.

GnuPG has supported Curve25519/Ed25519 for some time, and today I prefer it over RSA. Infrastructure has been gradually introducing support for it as well, to the point that I now believe I can cut the ropes to the old world with RSA. Having a offline master key is still a strong preference, so I will stick to that decision. You shouldn’t run around with your primary master key if it is possible to get by with subkeys for daily use, and that has worked well for me over the years.

Hardware smartcard support for Curve25519/Ed25519 has been behind software support. NIIBE Yutaka developed the FST-01 hardware device in 2011, and the more modern FST-01G device in 2016. He also wrote the Gnuk software implementation of the OpenPGP card specification that runs on the FST-01 hardware (and other devices). The FST-01 hardware design is open, and it only runs the Gnuk free software. You can buy the FST-01G device from the FSF. The device has not received the FSF Respects Your Freedom stamp, even though it is sold by FSF which seems a bit hypocritical. Hardware running Gnuk are the only free software OpenPGP smartcard that supports Curve25519/Ed25519 right now, to my knowledge. The physical form factor is not as slick as the YubiKey (especially the nano-versions of the YubiKey that can be emerged into the USB slot), but it is a trade-off I can live with. Niibe introduced the FST-01SZ at FOSDEM’19 but to me it does not appear to offer any feature over the FST-01G and is not available for online purchase right now.

I have always generated keys in software using GnuPG. My arguments traditionally was that I 1) don’t trust closed-source RSA key generation implementations, and 2) want to be able to reproduce my setup with a brand new device. With Gnuk the first argument doesn’t hold any longer. However, I still prefer to generate keys with GnuPG on a Linux-based Debian machine because that software stack is likely to receive more auditing than Gnuk. It is a delicated decision though, since GnuPG on Debian is many orders of complexity higher than the Gnuk software. My second argument is now the primary driver for this decision.

I prefer the SHA-2 family of hashes over SHA-1, and earlier had to configure GnuPG for this. Today I believe the defaults have been improved and this is no longer an issue.

Back in 2014, I had a goal of having a JPEG image embedded in my OpenPGP key. I never finished that process, and I have not been sorry for missing out on anything as a result. On the contrary, the size of the key with an embedded image woud have been even more problematic than the already large key holding 4 embedded RSA public keys in it.

To summarize, my requirements for my OpenPGP key setup in 2019 are:

  • Curve25519/Ed25519 algorithms.
  • Master key on USB stick.
  • USB stick only used on an offline computer.
  • Subkeys for daily use (signature, encryption and authentication).
  • Keys are generated in GnuPG software and imported to the smartcard.
  • Smartcard is open hardware and running free software.

Getting this setup up and running sadly requires quite some detailed work, which will be the topic of other posts… stay tuned!

Portable Symmetric Key Container (PSKC) Library

For the past weeks I have been working on implementing RFC 6030, also known as Portable Symmetric Key Container (PSKC). So what is PSKC? The Portable Symmetric Key Container (PSKC) format is used to transport and provision symmetric keys to cryptographic devices or software.

My PSKC Library allows you to parse, validate and generate PSKC data. The PSKC Library is written in C, uses LibXML, and is licensed under LGPLv2+. In practice, PSKC is most commonly used to transport secret keys for OATH HOTP/TOTP devices (and other OTP devices) between the personalization machine and the OTP validation server. Yesterday I released version 2.0.0 of OATH Toolkit with the new PSKC Library. See my earlier introduction to OATH Toolkit for background. OATH Toolkit is packaged for Debian/Ubuntu and I hope to refresh the package to include libpskc/pskctool soon.

To get a feeling for the PSKC data format, consider the most minimal valid PSKC data:

<?xml version="1.0"?>
<KeyContainer xmlns="urn:ietf:params:xml:ns:keyprov:pskc" Version="1.0">
  <KeyPackage/>
</KeyContainer>

The library can easily be used to export PSKC data into a comma-separated value (CSV) format, in fact the PSKC library tutorial concludes with that as an example. There is complete API documentation for the library. The command line tool is more useful for end-users and allows you to parse and inspect PSKC data. Below is an illustration of how you would use it to parse some PSKC data, first we show the content of a file “pskc-figure2.xml”:

<?xml version="1.0" encoding="UTF-8"?>
<KeyContainer Version="1.0"
	      Id="exampleID1"
	      xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
  <KeyPackage>
    <Key Id="12345678"
         Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
      <Issuer>Issuer-A</Issuer>
      <Data>
        <Secret>
          <PlainValue>MTIzNA==
          </PlainValue>
        </Secret>
      </Data>
    </Key>
  </KeyPackage>
</KeyContainer>

Here is how you would parse and pretty print that PSKC data:

jas@latte:~$ pskctool -c pskc-figure2.xml 
Portable Symmetric Key Container (PSKC):
	Version: 1.0
	Id: exampleID1
	KeyPackage 0:
		DeviceInfo:
		Key:
			Id: 12345678
			Issuer: Issuer-A
			Algorithm: urn:ietf:params:xml:ns:keyprov:pskc:hotp
			Key Secret (base64): MTIzNA==

jas@latte:~$

For more information, see the OATH Toolkit website and the PSKC Library Manual.

Unattended SSH with Smartcard

I have several backup servers that run the excellent rsnapshot software, which uses Secure Shell (SSH) for remote access. The SSH private key of the backup server can be a weak link in the overall security. To see how it can be a problem, consider if someone breaks into your backup server and manages to copy your SSH private key, they will now have the ability to login to all machines that you take backups off (and that should be all of your machines, right?).

The traditional way to mitigate SSH private key theft is by password protecting the private key. This works poorly in an unattended server environment because either the decryption password needs to be stored in disk (where the attacker can read it) or the decrypted private key has to be available in decrypted form in memory (where attacker can read it).

A better way to deal with the problem is to move the SSH private key to a smartcard. The idea is that the private key cannot be copied by an attacker who roots your backup server. (Careful readers may have spotted a flaw here, and I need to explain one weakness with my solution: an attacker will still be able to login to all your systems by going through your backup server, however it will require an open inbound network connection to your backup server and the attacker will never know what your private key is. What this does is to allow you to more easily do damage control by removing the smartcard from the backup server.)

In this writeup, I’ll explain how to accomplish all this on a Debian/Ubuntu-system using a OpenPGP smartcard, a Gemalto USB Shell Token v2 with gpg-agent/scdaemon from GnuPG together with OpenSSH.

Continue reading Unattended SSH with Smartcard

Introducing the OATH Toolkit

I am happy to announce a project that I have been working quietly on for about a year: the OATH Toolkit. OATH stands for Open AuTHentication and is an organization that specify standards around authentication. That is a pretty broad focus, but practically it has translated into work on specifying standards around deploying and using electronic token based user authentication such as the YubiKey.

YubiKey

OATH’s most visible specification has been the HOTP algorithm which is a way to generate event-based one-time passwords from a shared secret using HMAC-SHA1. HOTP has been published through the IETF as RFC 4226. Built on top of HOTP is the time-based variant called TOTP, which requires a clock in the token. OATH do some other work too, like specifying a data format for transferring the token configuration data (e.g., serial number and shared secret) called PSKC.
Continue reading Introducing the OATH Toolkit